Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Comput Biol Med ; 145: 105523, 2022 06.
Article in English | MEDLINE | ID: covidwho-1814279

ABSTRACT

Starting three decades ago and spreading rapidly around the world, acquired immunodeficiency syndrome (AIDS) is an infectious disease distinct from other contagious diseases by its unique ways of transmission. Over the past few decades, research into new drug compounds has been accompanied by extensive advances, and the design and manufacture of drugs that inhibit virus enzymes is one way to combat the AIDS virus. Since blocking enzyme activity can kill a pathogen or correct a metabolic imbalance, the design and use of enzyme inhibitors is a new approach against viruses. We carried out an in-depth analysis of the efficacy of atazanavir and its newly designed analogs as human immunodeficiency virus (HIV) protease inhibitors using molecular docking. The best-designed analogs were then compared with atazanavir by the molecular dynamics simulation. The most promising results were ultimately found based on the docking analysis for HIV protease. Several exhibited an estimated free binding energy lower than -9.45 kcal/mol, indicating better prediction results than the atazanavir. ATV7 inhibitor with antiviral action may be more beneficial for infected patients with HIV. Molecular dynamics analysis and binding energy also showed that the ATV7 drug had more inhibitory ability than the atazanavir drug.


Subject(s)
Atazanavir Sulfate , HIV Protease Inhibitors , Atazanavir Sulfate/pharmacology , Atazanavir Sulfate/therapeutic use , HIV Protease/chemistry , HIV Protease/metabolism , HIV Protease/therapeutic use , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/metabolism , HIV Protease Inhibitors/pharmacology , Molecular Docking Simulation
2.
Molecules ; 26(23)2021 Dec 05.
Article in English | MEDLINE | ID: covidwho-1555019

ABSTRACT

SARS-CoV-2 is highly homologous to SARS-CoV. To date, the main protease (Mpro) of SARS-CoV-2 is regarded as an important drug target for the treatment of Coronavirus Disease 2019 (COVID-19). Some experiments confirmed that several HIV protease inhibitors present the inhibitory effects on the replication of SARS-CoV-2 by inhibiting Mpro. However, the mechanism of action has still not been studied very clearly. In this work, the interaction mechanism of four HIV protease inhibitors Darunavir (DRV), Lopinavir (LPV), Nelfinavir (NFV), and Ritonavire (RTV) targeting SARS-CoV-2 Mpro was explored by applying docking, molecular dynamics (MD) simulations, and MM-GBSA methods using the broad-spectrum antiviral drug Ribavirin (RBV) as the negative and nonspecific control. Our results revealed that LPV, RTV, and NFV have higher binding affinities with Mpro, and they all interact with catalytic residues His41 and the other two key amino acids Met49 and Met165. Pharmacophore model analysis further revealed that the aromatic ring, hydrogen bond donor, and hydrophobic group are the essential infrastructure of Mpro inhibitors. Overall, this study applied computational simulation methods to study the interaction mechanism of HIV-1 protease inhibitors with SARS-CoV-2 Mpro, and the findings provide useful insights for the development of novel anti-SARS-CoV-2 agents for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/chemistry , Drug Design , HIV Protease Inhibitors/chemistry , Humans , Protein Binding
3.
J Chem Inf Model ; 60(12): 5771-5780, 2020 12 28.
Article in English | MEDLINE | ID: covidwho-1065771

ABSTRACT

The novel coronavirus (SARS-CoV-2) has infected several million people and caused thousands of deaths worldwide since December 2019. As the disease is spreading rapidly all over the world, it is urgent to find effective drugs to treat the virus. The main protease (Mpro) of SARS-CoV-2 is one of the potential drug targets. Therefore, in this context, we used rigorous computational methods, including molecular docking, fast pulling of ligand (FPL), and free energy perturbation (FEP), to investigate potential inhibitors of SARS-CoV-2 Mpro. We first tested our approach with three reported inhibitors of SARS-CoV-2 Mpro, and our computational results are in good agreement with the respective experimental data. Subsequently, we applied our approach on a database of ∼4600 natural compounds, as well as 8 available HIV-1 protease (PR) inhibitors and an aza-peptide epoxide. Molecular docking resulted in a short list of 35 natural compounds, which was subsequently refined using the FPL scheme. FPL simulations resulted in five potential inhibitors, including three natural compounds and two available HIV-1 PR inhibitors. Finally, FEP, the most accurate and precise method, was used to determine the absolute binding free energy of these five compounds. FEP results indicate that two natural compounds, cannabisin A and isoacteoside, and an HIV-1 PR inhibitor, darunavir, exhibit a large binding free energy to SARS-CoV-2 Mpro, which is larger than that of 13b, the most reliable SARS-CoV-2 Mpro inhibitor recently reported. The binding free energy largely arises from van der Waals interaction. We also found that Glu166 forms H-bonds to all of the inhibitors. Replacing Glu166 by an alanine residue leads to ∼2.0 kcal/mol decreases in the affinity of darunavir to SARS-CoV-2 Mpro. Our results could contribute to the development of potential drugs inhibiting SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , COVID-19 Drug Treatment , HIV Protease Inhibitors/chemistry , HIV Protease/metabolism , SARS-CoV-2/drug effects , Amino Acid Sequence , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , Biological Products/chemistry , Biological Products/pharmacology , Darunavir/chemistry , Darunavir/pharmacology , Databases, Factual , Drug Design , Glucosides/chemistry , Glucosides/pharmacology , HIV Protease Inhibitors/metabolism , HIV Protease Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Peptides/chemistry , Phenols/chemistry , Phenols/pharmacology , Protein Binding , Structure-Activity Relationship , Thermodynamics
4.
J Mol Graph Model ; 102: 107769, 2021 01.
Article in English | MEDLINE | ID: covidwho-856885

ABSTRACT

Coronavirus outbreak in December 2019 (COVID-19) is an emerging viral disease that poses major menace to Humans and it's a crucial need to find the possible treatment strategies. Spike protein (S2), a envelop glycoprotein aids viral entry into the host cells that corresponds to immunogenic ACE2 receptor binding and represents a potential antiviral drug target. Several drugs such as antimalarial, antibiotic, anti-inflammatory and HIV-protease inhibitors are currently undergoing treatment as clinical studies to test the efficacy and safety of COVID-19. Some promising results have been observed with the patients and also with high mortality rate. Hence, there is a need to screen the best CoV inhibitors using insilico analysis. The Molecular methodologies applied in the present study are, Molecular docking, virtual screening, drug-like and ADMET prediction helps to target CoV inhibitors. The results were screened based on docking score, H-bonds, and amino acid interactions. The results shows HIV-protease inhibitors such as cobicistat (-8.3kcal/mol), Darunavir (-7.4kcal/mol), Lopinavir (-9.1kcal/mol) and Ritonavir (-8.0 kcal/mol), anti-inflammatory drugs such as Baricitinib (-5.8kcal/mol), Ruxolitinib (-6.5kcal/mol), Thalidomide (-6.5kcal/mol), antibiotic drugs such as Erythromycin(-9.0kcal/mol) and Spiramycin (-8.5kcal/mol) molecules have good affinity towards spike protein compared to antimalarial drugs Chloroquine (-6.2kcal/mol), Hydroxychloroquine (-5.2kcal/mol) and Artemisinin (-6.8kcal/mol) have poor affinity to spike protein. The insilico pharmacological evaluation shows that these molecules exhibit good affinity of drug-like and ADMET properties. Hence, we propose that HIVprotease, anti-inflammatory and antibiotic inhibitors are the potential lead drug molecules for spike protein and preclinical studies needed to confirm the promising therapeutic ability against COVID-19.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/drug effects , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Computer Simulation , Drug Discovery , Drug Evaluation, Preclinical , Drug Repositioning , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , User-Computer Interface
5.
Viruses ; 12(8)2020 07 26.
Article in English | MEDLINE | ID: covidwho-671037

ABSTRACT

COVID-19 is a pandemic health emergency faced by the entire world. The clinical treatment of the severe acute respiratory syndrome (SARS) CoV-2 is currently based on the experimental administration of HIV antiviral drugs, such as lopinavir, ritonavir, and remdesivir (a nucleotide analogue used for Ebola infection). This work proposes a repurposing process using a database containing approximately 8000 known drugs in synergy structure- and ligand-based studies by means of the molecular docking and descriptor-based protocol. The proposed in silico findings identified new potential SARS CoV-2 main protease (MPRO) inhibitors that fit in the catalytic binding site of SARS CoV-2 MPRO. Several selected structures are NAD-like derivatives, suggesting a relevant role of these molecules in the modulation of SARS CoV-2 infection in conditions of cell chronic oxidative stress. Increased catabolism of NAD(H) during protein ribosylation in the DNA damage repair process may explain the greater susceptibility of the elderly population to the acute respiratory symptoms of COVID-19. The molecular modelling studies proposed herein agree with this hypothesis.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/chemistry , NAD/metabolism , Pandemics , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Aging/metabolism , Binding Sites , COVID-19 , Computer Simulation , Coronavirus 3C Proteases , Coronavirus Infections/metabolism , Coronavirus Infections/virology , DNA Damage , Drug Repositioning , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , Humans , Models, Molecular , Molecular Docking Simulation , Oxidation-Reduction , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Protease Inhibitors/chemistry , SARS-CoV-2 , COVID-19 Drug Treatment
6.
Travel Med Infect Dis ; 35: 101646, 2020.
Article in English | MEDLINE | ID: covidwho-47222

ABSTRACT

BACKGROUND: The COVID-19 has now been declared a global pandemic by the World Health Organization. There is an emergent need to search for possible medications. METHOD: Utilization of the available sequence information, homology modeling, and in slico docking a number of available medications might prove to be effective in inhibiting the SARS-CoV-2 two main drug targets, the spike glycoprotein, and the 3CL protease. RESULTS: Several compounds were determined from the in silico docking models that might prove to be effective inhibitors for SARS-CoV-2. Several antiviral medications: Zanamivir, Indinavir, Saquinavir, and Remdesivir show potential as and 3CLPRO main proteinase inhibitors and as a treatment for COVID-19. CONCLUSION: Zanamivir, Indinavir, Saquinavir, and Remdesivir are among the exciting hits on the 3CLPRO main proteinase. It is also exciting to uncover that Flavin Adenine Dinucleotide (FAD) Adeflavin, B2 deficiency medicine, and Coenzyme A, a coenzyme, may also be potentially used for the treatment of SARS-CoV-2 infections. The use of these off-label medications may be beneficial in the treatment of the COVID-19.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Drug Discovery/methods , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/therapeutic use , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/therapeutic use , Humans , Indinavir/chemistry , Indinavir/therapeutic use , Molecular Docking Simulation , Off-Label Use , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Saquinavir/chemistry , Saquinavir/therapeutic use , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Structural Homology, Protein , Viral Nonstructural Proteins/antagonists & inhibitors , Zanamivir/chemistry , Zanamivir/therapeutic use , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL